Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Plant diversity and grasses increase root biomass in a rainfall and grassland diversity manipulationThe loss of plant productivity with declining diversity is well established, exceeding other global change drivers including drought. These patterns are most clearly established for aboveground productivity, it remains poorly understood whether productivity increases associated with diversity are replicated belowground. To address this gap, we established a plant diversity-manipulation experiment in 2018. It is a full factorial manipulation of plant species richness and community composition, and precipitation. Three and five years post-establishment, two bulk soil cores (20cm depth) were collected and composited from each plot and were processed for roots to determine belowground biomass as root standing crop. We observed a strong positive relationship between richness and aboveground production and belowground biomass, generating positive combined above and belowground with diversity. Root standing crop increased 1.4-fold from years three to five. Grass communities produced more root biomass (monoculture mean 463.9 ± 410.3g m−2), and the magnitude of the relationship between richness and root standing crop was greatest within those communities. Legume communities produced the fewest roots (monoculture mean 212.2 ± 155.1g m−2), and belowground standing crop was not affected by diversity. Root standing crops in year three were 1.8 times higher under low precipitation conditions, while in year five we observed comparable root standing crops between precipitation treatments. Plant family was a strong mediator of increased belowground biomass observed with diversity, with single family grass and aster families generating 1.7 times greater root standing crops in six compared to single species communities, relationships between diversity and aboveground production were consistently observed in both single-family and multiple family communities. Diverse communities with species from multiple families generated only 1.3 times the root standing crop compared to monoculture average root biomass. We surprisingly observe diverse single family communities can generate increases in root standing crops that exceed those generated by diverse multiple family communities, highlighting the importance of plant richness within plant family for a given community. These patterns have potential implications for understanding the interactions of multiple global change drivers as changes in both precipitation and plant community composition do alter whether plant production aboveground is translated belowground biomass.more » « less
-
Abstract Productivity benefits from diversity can arise when compatible pathogen hosts are buffered by unrelated neighbors, diluting pathogen impacts. However, the generality of pathogen dilution has been controversial and rarely tested within biodiversity manipulations. Here, we test whether soil pathogen dilution generates diversity- productivity relationships using a field biodiversity-manipulation experiment, greenhouse assays, and feedback modeling. We find that the accumulation of specialist pathogens in monocultures decreases host plant yields and that pathogen dilution predicts plant productivity gains derived from diversity. Pathogen specialization predicts the strength of the negative feedback between plant species in greenhouse assays. These feedbacks significantly predict the overyielding measured in the field the following year. This relationship strengthens when accounting for the expected dilution of pathogens in mixtures. Using a feedback model, we corroborate that pathogen dilution drives overyielding. Combined empirical and theoretical evidence indicate that specialist pathogen dilution generates overyielding and suggests that the risk of losing productivity benefits from diversity may be highest where environmental change decouples plant-microbe interactions.more » « less
An official website of the United States government
